skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mason, Emily I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Sun’s corona is its tenuous outer atmosphere of hot plasma, which is difficult to observe. Most models of the corona extrapolate its magnetic field from that measured on the photosphere (the Sun’s optical surface) over a full 27-day solar rotational period, providing a time-stationary approximation. We present a model of the corona that evolves continuously in time, by assimilating photospheric magnetic field observations as they become available. This approach reproduces dynamical features that do not appear in time-stationary models. We used the model to predict coronal structure during the total solar eclipse of 8 April 2024 near the maximum of the solar activity cycle. There is better agreement between the model predictions and eclipse observations in coronal regions located above recently assimilated photospheric data. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. Abstract One systematic limitation of solar coronal hole (CH) detection at extreme ultraviolet (EUV) wavelengths is the obscuration of dark regions of the corona by brighter structures along the line of sight. Another problem arises when using CHs to compute the Sun’s open magnetic flux, where surface measurements of the radial magnetic field, B r , are situated slightly below the effective height of coronal EUV emission. In this paper, we explore these two limitations utilizing a thermodynamic magnetohydrodynamic (MHD) model of the corona for Carrington rotation (CR) 2101, where we generate CH detections from EUV 193 Å images of the corona forward-modeled from the MHD solution, and where the modeled open field is known. We demonstrate a method to combine EUV images into a full Sun map that helps alleviate CH obscuration called theminimum intensity diskmerge(MIDM). We also show the variation in measured open flux and CH area that is due to the effective height differences between EUV and B r measurements. We then apply the MIDM method to SDO/AIA 193 Å observations from CR 2101, and conduct an analogous analysis. In this case, the MIDM method uses time-varying images, the effects of which are discussed. We show that overall, the MIDM method and an appreciation of the effective height mismatch provide a useful new way to extract a broader view of CHs, especially near the poles. In turn, they enable improved estimates of the open magnetic flux, and help facilitate comparisons between models and observations. 
    more » « less
  3. Abstract We describe, test, and apply a technique to incorporate full-Sun, surface flux evolution into an MHD model of the global solar corona. Requiring only maps of the evolving surface flux, our method is similar to that of Lionello et al., but we introduce two ways to correct the electric field at the lower boundary to mitigate spurious currents. We verify the accuracy of our procedures by comparing to a reference simulation, driven with known flows and electric fields. We then present a thermodynamic MHD calculation lasting one solar rotation driven by maps from the magnetic flux evolution model of Schrijver & DeRosa. The dynamic, time-dependent nature of the model corona is illustrated by examining the evolution of the open flux boundaries and forward-modeled EUV emission, which evolve in response to surface flows and the emergence and cancellation flux. Although our main goal is to present the method, we briefly investigate the relevance of this evolution to properties of the slow solar wind, examining the mapping of dipped field lines to the topological signatures of the “S-Web” and comparing charge state ratios computed in the time-dependently driven run to a steady-state equivalent. Interestingly, we find that driving on its own does not significantly improve the charge state ratios, at least in this modest resolution run that injects minimal helicity. Still, many aspects of the time-dependently driven model cannot be captured with traditional steady-state methods, and such a technique may be particularly relevant for the next generation of solar wind and coronal mass ejection models. 
    more » « less
  4. Abstract We present in this Letter the first global comparison between traditional line-tied steady-state magnetohydrodynamic models and a new, fully time-dependent thermodynamic magnetohydrodynamic simulation of the global corona. To approximate surface magnetic field distributions and magnitudes around solar minimum, we use the Lockheed Evolving Surface-Flux Assimilation Model to obtain input maps that incorporate flux emergence and surface flows over a full solar rotation, including differential rotation and meridional flows. Each time step evolves the previous state of the plasma with a new magnetic field input boundary condition, mimicking photospheric driving on the Sun. We find that this method produces a qualitatively different corona compared to steady-state models. The magnetic energy levels are higher in the time-dependent model, and coronal holes evolve more along the following edge than they do in steady-state models. Coronal changes, as illustrated with forward-modeled emission maps, evolve on longer timescales with time-dependent driving. We discuss implications for active and quiet Sun scenarios, solar wind formation, and widely used steady-state assumptions like potential field source surface calculations. 
    more » « less
  5. This paper outlines key scientific topics that are important for the development of solar system physics and how observations of heavy ion composition can address them. The key objectives include, 1) understanding the Sun’s chemical composition by identifying specific mechanisms driving elemental variation in the corona. 2) Disentangling the solar wind birthplace and drivers of release by determining the relative contributions of active regions (ARs), quiet Sun, and coronal hole plasma to the solar wind. 3) Determining the principal mechanisms driving solar wind evolution from the Sun by identifying the importance and interplay of reconnection, waves, and/or turbulence in driving the extended acceleration and heating of solar wind and transient plasma. The paper recommends complementary heavy ion measurements that can be traced from the Sun to the heliosphere to properly connect and study these regions to address these topics. The careful determination of heavy ion and elemental composition of several particle populations, matched at the Sun and in the heliosphere, will permit for a comprehensive examination of fractionation processes, wave-particle interactions, coronal heating, and solar wind release and energization that are key to understanding how the Sun forms and influences the heliosphere. 
    more » « less